Tuesday 2 September 2008

Report 6: Human Chromosome

INTRODUCTION
Any of the organized components of each cell which carry the individual's hereditary material, deoxyribonucleic acid (DNA). Chromosomes are found in all organisms with a cell nucleus (eukaryotes) and are located within the nucleus. Each chromosome contains a single extremely long DNA molecule that is packaged by various proteins into a compact domain. A full set, or complement, of chromosomes is carried by each sperm or ovum in animals and each pollen grain or ovule in plants. This constitutes the haploid (n) genome of that organism and contains a complete set of the genes characteristic of that organism. Sexually reproducing organisms in both the plant and animal kingdoms begin their development by the fusion of two haploid germ cells and are thus diploid (2n), with two sets of chromosomes in each body cell. These two sets of chromosomes carry virtually all the thousands of genes of each cell, with the exception of the tiny number in the mitochrondria (in animal), and a few plant chloroplasts. See also Deoxyribonucleic acid (DNA); Gene.
Chromosomes can change their conformation and degree of compaction throughout the cell cycle. During interphase, the major portion of the cycle, chromosomes are not visible under the light microscope because, although they are very long, they are extremely thin. However, during cell division (mitosis or meiosis), the chromosomes become compacted into shorter and thicker structures that can be seen under the microscope. At this time they appear as paired rods with defined ends, called telomeres, and they remain joined at a constricted region, the centromere, until the beginning of anaphase of cell division. See also Cell cycle; Meiosis; Mitosis.
Chromosomes are distinguished from one another by length and position of the centromere. They are metacentric (centromere in the middle of the chromosome), acrocentric (centromere close to one end), or telocentric (centromere at the end, or telomere). The centromere thus usually lies between two chromosome arms, which contain the genes and their regulatory regions, as well as other DNA sequences that have no known function. In many species, regional differences in base composition and in the time at which the DNA is replicated serve as the basis for special staining techniques that make visible a series of distinctive bands on each arm, and these can be used to identify the chromosome.
Each nucleus in the cell of a human or other mammal contains some 6 billion base pairs of DNA which, if stretched out, would form a very thin thread about 6 ft (2 m) long. This DNA has to be packaged into the chromosome within a nucleus that is much smaller than a printed dot. Each chromosome contains a single length of DNA comprising a specific portion of the genetic material of the organism. Tiny stretches of DNA, about 140 base pairs long and containing acidic phosphate groups, are individually wrapped around an octamer consisting of two molecules of each of the four basic histone proteins H2a, H2b, H3, and H4. This arrangement produces small structures called nucleosomes and results in a sevenfold compaction of the DNA strand. Further compaction is achieved by binding the histone protein H1 and several nonhistone proteins, resulting in a supercoiled structure in which the chromosome is shortened by about 1600-fold in the interphase nucleus and by about 8000-fold during metaphase and anaphase, where the genetic material must be fully compacted for transport to the two daughter cells. At the point of maximum compaction, human chromosomes range in size from about 2 to 10 micrometers in length, that is, less than 0.0004 in.

LEARNING OUTCOMES
We are able to
1.    prepare the karyotype of human leukocyte chromosome and
2.    also determine the nmber of chromosome present, sex of the individual and presence or absence or structural chromosome aberration.

METHODS
Preparation of karyotypes
1.    The banding patterns, size and shape of the chromosome in figure 6.1, 6.2 and 6.3 was examine and prepare it.











DISSCUSSION
Human cells have 23 pairs of large linear nuclear chromosomes, giving a total of 46 per cell. In addition to these, human cells have many hundreds of copies of the mitochondrial genome. Sequencing of the human genome has provided a great deal of information about each of the chromosome.
Each diploid (2n) organism has a characteristic number of chromosomes in each body (somatic) cell, which can vary from two in a nematode worm and one species of ant, to hundreds in some butterflies, crustaceans, and plants. The diploid number of chromosomes includes a haploid (n) set from each parent. Many one-celled organisms are haploid throughout most of their life cycle. The human diploid number is 46.
There is some relationship between the number of chromosomes and their size. Some of the chromosomes in certain classes of organisms with large numbers of chromosomes are very tiny, and have been called microchromosomes. In birds and some reptiles, there are about 30–40 pairs of microchromosomes in addition to 5–7 or so pairs of regular-sized macrochromosomes. The number of microchromosomes is constant in any species carrying them, and only their size distinguishes them from the widespread macrochromosomes. At least seven microchromosomes in birds have been shown to contain genes, and all are thought to.
A telomere caps each end of every chromosome and binds specific proteins that protect it from being digested by enzymes (exonucleases) present in the same cell. Most important, the telomere permits DNA replication to continue to the very end of the chromosome, thus assuring its stability. The telomere is also involved in attachment of the chromosome ends to the nuclear membrane and in pairing of homologous chromosomes during meiosis. The structure of telomeric DNA is very similar in virtually all eukaryotic organisms except the fruit fly (Drosophila). One strand of the DNA is rich in guanine and is oriented toward the end of the chromosome, and the other strand is rich in cytosine and is oriented toward the centromere. In most organisms, the telomere consists of multiple copies of a very short DNA repeat.
The centromere is responsible for proper segregation of each chromosome pair during cell division. The chromatids in mitosis and each pair of homologous chromosomes in meiosis are held together at the centromere until anaphase, when they separate and move to the spindle poles, thus being distributed to the two daughter cells. The kinetochore, which is the attachment site for the microtubules that guide the movement of the chromosomes to the poles, is organized around the centromere. The molecular structures of centromeres in most species are still unclear. The repetitive DNA making up and surrounding the centromere is called heterochromatin because it remains condensed throughout the cell cycle and hence stains intensely.


The differences between the karyotypes
Chromosomal mutations produce changes in whole chromosomes (more than one gene) or in the number of chromosomes present.
  • Deletion - loss of part of a chromosome
  • Duplication - extra copies of a part of a chromosome
  • Inversion - reverse the direction of a part of a chromosome
  • Translocation - part of a chromosome breaks off and attaches to another chromosome
Here are some syndrome and the differences between the syndrome.
  • Down's syndrome, usually is caused by an extra copy of chromosome 21 (trisomy 21). Characteristics include decreased muscle tone, stockier build, asymmetrical skull, slanting eyes and mild to moderate mental retardation.
  • Cri du chat, which is caused by the deletion of part of the short arm of chromosome 5. "Cri du chat" means "cry of the cat" in French, and the condition was so-named because affected babies make high-pitched cries that sound like a cat. Affected individuals have wide-set eyes, a small head and jaw and are moderately to severely mentally retarded and very short.
  • Wolf-Hirschhorn syndrome, which is caused by partial deletion of the short arm of chromosome 4. It is characterized by severe growth retardation and severe to profound mental retardation.
  • Edwards syndrome, which is the second most common trisomy after Down syndrome. It is a trisomy of chromosome 18. Symptoms include mental and motor retardation and numerous congenital anomalies causing serious health problems. Ninety percent die in infancy; however, those who live past their first birthday usually are quite healthy thereafter. They have a characteristic hand appearance with clenched hands and overlapping fingers.
  • Patau Syndrome, also called D-Syndrome or trisomy-13. Symptoms are somewhat similar to those of trisomy-18, but they do not have the characteristic hand shape.
  • Idic15, abbreviation for Isodicentric 15 on chromosome 15; also called the following names due to various researches, but they all mean the same; IDIC(15), Inverted dupliction 15, extra Marker, Inv dup 15, partial tetrasomy 15
  • Jacobsen syndrome, also called the terminal 11q deletion disorder.[51] This is a very rare disorder. Those affected have normal intelligence or mild mental retardation, with poor expressive language skills. Most have a bleeding disorder called Paris-Trousseau syndrome.
  • Klinefelter's syndrome (XXY). Men with Klinefelter syndrome are usually sterile, and tend to have longer arms and legs and to be taller than their peers. Boys with the syndrome are often shy and quiet, and have a higher incidence of speech delay and dyslexia. During puberty, without testosterone treatment, some of them may develop gynecomastia.
  • Turner syndrome (X instead of XX or XY). In Turner syndrome, female sexual characteristics are present but underdeveloped. People with Turner syndrome often have a short stature, low hairline, abnormal eye features and bone development and a "caved-in" appearance to the chest.
  • XYY syndrome. XYY boys are usually taller than their siblings. Like XXY boys and XXX girls, they are somewhat more likely to have learning difficulties.
  • Triple-X syndrome (XXX). XXX girls tend to be tall and thin. They have a higher incidence of dyslexia.
  • Small supernumerary marker chromosome. This means there is an extra, abnormal chromosome. Features depend on the origin of the extra genetic material. Cat-eye syndrome and isodicentric chromosome 15 syndrome (or Idic15) are both caused by a supernumerary marker chromosome, as is Pallister-Killian syndrome.

CONCLUSSION
As a conclusion, we are able to prepare and determine the karyotypes with the disease and the structure with each chromosome. Human chromosome have a lot of differences with each other eventhough the number of chromosome is the same and slightly different.

REFERENCES



Brooker, R. J. (2009). Genetics Analysis & Principle. Third edition: Mc Graw Hill Companies Inc.
Campbell O.N. (2005). Biology. Seventh Edition: Benjamin Cumming.
Eldra P. S., Linda R. B. and  Diana W.M. (2005). Biology. Third Edition: Thomson Brooks/Cole.
Kenneth R. M.,and Joseph L. (2004). Prentice Hall Biology. Teacher's Edition: Pearson Publishing.

No comments:

Post a Comment